BBarolo Documentation
Release 1.7

Enrico Di Teodoro

Oct 23, 2023

1 Installing BBarolo

3

1.1
1.2

1.3

Pre-compiled binaries
Compiling from source
1.2.1 Requirements

1.2.2 Compiling

Installing via Homebrew (MAC only)

Running BBarolo

2.1
2.2

List of tasks and parameters

3.1

32

33

34

3.5

3.6

3.7

Graphical User Interface
Commandline

General parameters

BBAROLO:

DWW Www

N 93

3.1.1 Input/output parameters o v vt e

3DFITtask

3.1.2 Beam parameters
3.2.1 Parameters

322 0Outputs e
323 Example.,
3.2.4 Guidelines for a successful fit
3.2.5 Fitting several galaxies at the same time
SPACEPAR task

352 Outputso
353 Example.,
SMOOTH task
362 Outputs L.
363 Example.,

3.3.1 Parameters
3.4.1 Parameters
3.5.1 Parameters
3.6.1 Parameters
SMOOTHSPEC task

3.7.1 Parameters

372 Outputs e

332 Outputs e
333 Example.
GALMODtask
342 Outputso
343 Example.
SEARCHtask

373 Example e e e e e e e e e 26

3.8 2DFITtask o o e e 27
3.8.1 Parameters e e e e e 27
382 0utputs e e 27
3.83 Example L e e e e e e 27
39 ELLPROFtask e e 28
30.1 Parameters e e e e e e e e e e e e e e e e e e 28
302 0UtpuUtS . . oL e e e e e e 28
393 Example L e e e e e 28
3.10 Moment maps and position-velocity cutso Lo o 29
3.10.1 Parameters formaps e 29
3.10.2 Parameters for PVslices e 30
3103 OutputS . . e e e e e e e e e e e e e 30
3.10.4 Example L e e e e e e e e 30
Tools for FITS files 33
Installing pyBBarolo 37
5.1 Frompip . . . o o e e e e e e e e e e e e e 37
5.2 Buildandinstall e e 37
Quickstart 39
6.1 Runningatask e e e e e e e e 39
6.2 Availabletasks e 39
6.3 Example 1: 3Dfitofagalaxy e 40
6.4 Example2: 3D modelofagalaxy e 41
6.5 Example 3: Alltasks L e e e e e e 41
6.6 pyBBaroloforPROs e 43
API 45
License and citations 47
Troubleshooting 49
9.1 Frequently Asked QUESHIONS v i i e e e e e e e e e e e e e 49

BBarolo Documentation, Release 1.7

3D-Barolo (3D-Based Analysis of Rotating Objects via Line Observations) or BBarolo is a tool for fitting 3D tilted-
ring models to emission-line datacubes. The Python wrapper is pyBBarolo.

For a detailed description of the algorithms used in this code, please refer to BBarolo’s main paper. The documentan-
tion is also available in PDF here.

Table of contents:

BBAROLO: 1

http://adsabs.harvard.edu/abs/2015MNRAS.451.3021D
https://media.readthedocs.org/pdf/bbarolo/latest/bbarolo.pdf

BBarolo Documentation, Release 1.7

2 BBAROLO:

CHAPTER
ONE

INSTALLING BBAROLO

1.1 Pre-compiled binaries

Pre-compiled executable files for the GUI and the command line utility are available at this page. Binaries are for
Linux x86_64 and Mac OS X (> 10.6).

The command line executable (BBarolo) is also included in the GUI binary packages and can be found at:
¢ Linux: same directory of BBaroloGUI
* MacOS: BBaroloGUILapp/Contents/MacOS/BBarolo

The pre-compiled executables should work on most systems. If they don’t, please compile BBarolo from source
following the instructions below.

1.2 Compiling from source

The best way to exploit BBarolo functionalities is to compile the code directly on your computer. BBarolo compiles
and runs on Unix machines only.

1.2.1 Requirements

To compile the code, all you need is:

e a C++ compiler supporting C++11 standard, like the GNU compiler. OpenMP support is required for multi-
threading.

CFITSIO library.

e FFTW library.

* WCS library.

e QT toolkit (> 4.0), only if you would like to use the GUIL
* Gnuplot and Python (> 2.6) with the Astropy package.

Most of these libraries and packages should already be installed on scientific machines. Otherwise, you can easily
install them through the terminal commands of the various package managers, i.e. apt-get on Ubuntu-based, pacman
on Arch-based, yumn on RPM-based distros, brew or port on Mac OS X. Note that the QT toolkit is only needed to
compile the GUI, which is optional. Gnuplot and Python are not needed to successfully compile the code, but without
them BBarolo will not produce any outputs.

http://editeodoro.github.io/Bbarolo/downloads/binaries/
https://gcc.gnu.org/
http://heasarc.gsfc.nasa.gov/fitsio/
http://www.fftw.org/
http://www.atnf.csiro.au/people/mcalabre/WCS/
http://www.qt.io/developers/
http://www.gnuplot.info/
https://www.python.org/
http://www.astropy.org/

BBarolo Documentation, Release 1.7

1.2.2 Compiling

If your machine satisfies the above requirements, compiling BBarolo will hopefully be a piece of cake.

1. Download the latest stable release. From a terminal:

> wget https://github.com/editeodoro/Bbarolo/archive/X.Y.tar.gz

where X.Y is the release version. If you are brave, you can also try the latest (non stable) source code from
here.

2. Uncompress it and enter the BBarolo directory:

> tar —-xvf X.Y.tar.gz
> cd Bbarolo—-X.Y

3. Configure running autoconfigure script:

> ./configure

If the script is not executable: > chmod +x configure. The configure script takes a number of op-
tional arguments. For instance, it is possible to specify installation and library directories, or the compiler
to use:

> ./configure CXX=icpc --prefix=/dir/to/install --with-cfitsio=/dir/of/
—cfitsio —--with-wcslib=/dir/to/wcslib

If the configuration fails, follow the suggestions given by the script to manually set the path of libraries.

4. Compile the source:

> make

To compile in parallel: > make -3j N, where N is the number of processors. If the compilation suc-
ceeds, the executable BBarolo will appear in the current directory.

Optional steps

5. Install, e.g. copy the executable in the installation path (default is /usr/local/bin):

’> make install

6. Compile the GUI (QT > 4 needed):

’> make gui

This can fail for a number of reasons.

7. Compile BBarolo as a library:

> make 1lib

8. Clean up unnecessary files:

’> make clean

4 Chapter 1. Installing BBarolo

https://github.com/editeodoro/Bbarolo/archive/1.7.tar.gz
https://github.com/editeodoro/Bbarolo

BBarolo Documentation, Release 1.7

1.3 Installing via Homebrew (MAC only)

If you use Homebrew package manager for MacOSX, there is a simpler way of compiling and installing the code:

> wget https://raw.github.com/editeodoro/Bbarolo/master/bbarolo.rb
> brew install [--HEAD] bbarolo.rb

The first command downloads a ruby installing script, the second command installs BBarolo in
/usr/local/Cellar/bbarolo and symlinks the executable to /usr/local/bin. Homebrew takes care of all dependen-
cies. After installation, you will be able to run the code from any directory just by typing BBarolo. The optional
argument ——HEAD install the latest non-stable version rather than the stable release.

To uninstall BBarolo:

> brew uninstall bbarolo

1.3. Installing via Homebrew (MAC only) 5

https://brew.sh/

BBarolo Documentation, Release 1.7

6 Chapter 1. Installing BBarolo

CHAPTER
TWO

RUNNING BBAROLO

2.1 Graphical User Interface

BBarolo comes with a Graphical User Interface (GUI) that can help the user in setting up the input parameters.
Running BBarolo through the GUI should be quite straightforward: you do not have to learn the annoying list of
available parameters: the user needs just to fill the required fields in the GUI and this will create a text file with the
correct parameters and run BBarolo.

N.B.: Although the GUI allows the user to set the main parameters, many options can only be enabled through the
command line tool. Moreover, I stress that the GUI has not been updated together with the last releases of BBarolo. If
you experience any issues with the GUI or want to have full control of the code, I recommend you to use the command
line.

2.2 Command line

BBarolo is mainly meant to be run from the command line. For a very quick guide and to appreciate the biggest
achievement of my PhD, just type BBarolo on your keyboard in a terminal window.

Execution with a parameter file: BBarolo takes input parameters specified through a parameter file, provided at the
runtime. This is a text file containing a list of parameter names and values:

PARAM1 VALUE1
PARAM2 VALUEZ2
PARAM3 VALUE3

All available parameters are described in the task documentation. In the input file, parameter names are not case-
sensitive and lines starting with # or // are not read in. The order in which parameters are listed is unimportant, but, if
a parameter is listed more than once, only the last value is considered.

Some parameters are mandatory, some others are optional and have default values which are assumed when not
explicitly set. A template parameter file for the 3DFIT task can be obtained with the command > BBarolo -t. A
list of all parameters with their default values can be printed with > BBarolo —d. Anexample of parameter file can
be found here, full runnable instances can be downloaded from this page. The command > BBarolo -v will return
information about the code version and compiler flags.

After your parameter file is ready, BBarolo can be run with the following:

> BBarolo -p paramfile

where paramfile is the name of the user-defined input file. Since version v1.6, individual parameter values can also be
overridden from the command line directly, without changing the parameter file. For example:

http://editeodoro.github.io/Bbarolo/resources/param.par
http://editeodoro.github.io/Bbarolo/downloads/examples

BBarolo Documentation, Release 1.7

> BBarolo -p paramfile INC=60 PA=120

will set a INC of 60 degrees and a PA of 120 degrees and ignore the values listed in the paramfile.

Execution with command-line arguments: BBarolo can alternatively read all parameters directly from the command
line using the —c option. Parameters are given in the form PARAM=VALUE with no blank spaces:

> BBarolo -c¢ PARAM1=VALUEl PARAM2=VALUE2 PARAM3=VALUE3

If VALUE must contain white spaces, just include it in between quotation marks (e.g. FREE="VROT VDISP").
Names of parameters are not case-sensitive. This way is very convenient when the user only needs to run a task with
few parameters. For example, to run the source finder with default parameters:

> BBarolo -c¢ fitsfile=yourfits.fits search=true

Automated execution: BBarolo can otherwise be run in a completely automated way, i.e. providing no parameters
but the input FITS datacube. In this case, the code uses the source finder to identify the galaxy in the datacube, tries to
guess initial values for the rings and fits a 3D model to the data. Although this procedure might work and return nice
best-fit models if used with high resolution and high S/N data, it should be used carefully. In particular, the algorithm
for guessing initial values for the fit is still quite coarse. Wrong initial guesses may lead to completely inappropriate
models.

If you still want to try the automated execution:

> BBarolo -f fitsfile

where fitsfile is the name of the FITS file of the galaxy to analyse.

8 Chapter 2. Running BBarolo

CHAPTER
THREE

LIST OF TASKS AND PARAMETERS

BBarolo’s main algorithm for fitting 3D kinematic models to emission line data (3DFIT) makes use of a number
of utilities. These tasks include, for example, the disk modeling (GALMOD), the source finder (SEARCH) and the
smoothing utility (SMOOTH), and can be conveniently used outside the main algorithm as well.

In this page, I list the main tasks and related input parameters available in BBarolo. Parameter names are in boldface,
default values are in brackets. The names of parameters are not case-sensitive.

3.1 General parameters

In the following, a list of general parameters (e.g., not task-specific).

3.1.1 Input/output parameters

e FITSFILE [none]. The name of the input FITS file. This is a mandatory parameter for all tasks.
* OUTFOLDKER [./output]. The directory where the output files will be written.
* VERBOSE [true]. Enable all the output messages.

¢« THREADS [max CPUs]. Number of CPUs to use for task execution. All BBarolo’s tasks have shared-memory
parallelization. The code needs to be compiled with OpenMP support. If you encounter any problem with
multi-thread execution, switch back to single-thread mode and signal the problem.

e PLOTS [true]. If true, output plots will be produced (Python/Gnuplot needed).
* SHOWBAR [true]. Whether to show progress bars.
o STATS [false]. If true, calculate and print statistics of input FITS file.

3.1.2 Beam parameters

Following parameters can be used to specify the size and shape of the Point Spread Function (PSF or beam). These
parameters are ignored if beam information is written in the header of the input FITS, either through BMAJ, BMIN and
BPA keywords or in the HISTORY. The code defines the beam following the priority order: header -> bmaj,bmin,bpa
params -> beamfwhm param -> default to 30 arcsec.

* BMAJ [none]. The FWHM of the major axis of the elliptical Gaussian beam in arcsec.
e BMIN [none]. The FWHM of the minor minor axis of the elliptical Gaussian beam in arcsec.

* BPA [none]. The position angle of the major axis of the elliptical Gaussian beam in degrees, counter-clock from
the North direction.

BBarolo Documentation, Release 1.7

¢ BEAMFWHM [none]. The FWHM of a circular Gaussian beam in arcsec .

3.2 3DFIT task

3DFIT is the main BBarolo’s routine: it fits a 3D tilted-ring model to an emission-line data-cube. Algorithms used are
described in this paper.

3.2.1 Parameters

e 3DFIT [false]. This flag enables the 3D fitting algorithm. Can be true or false. The old flag GALFIT is now
deprecated and will be no more supported in future BBarolo’s releases.

Rings input
Following parameters are used to define the initial set of rings used for the fit. All parameters are allowed to vary
ring-by-ring or they can just be fixed to their initial value.

All parameters listed below (except NRADII and RADSEP) can be given in the form of a single value valid for all rings
or through a text file containing values at different radii. In this second case, the syntax to be used is file(filename,N,M),
where filename is the name of the file with values, N is the column number (counting from 1) and M is the starting row
(all rows if omitted). A subset of rows can also be selected using the syntax file(filename,N,start:stop), where start
and stop are the first and last row to be considered.

If any of the following parameters is not explicitly specified, BBarolo will estimate an appropriate initial value for that
parameter.

¢ NRADII [none]. The number of rings to be used and fitted. If not given, BBarolo will determine it from the
radial extension of the emission line.

* RADSEP [none]. The separation between rings in arcsec. If N radii have been requested, the rings will be
placed at N*RADSEP + RADSEP/2. If not given, it will be equal to the FWHM of the beam major axis.

* RADII [none]. This parameter can be used as an alternative to NRADII and RADSEP. RADII can be 1) a text
file (see above) with ring specified or 2) a list of radii or 3) a string in the format Rmin~Rmax:step (for example
60~180:60 will center rings at 60, 120 and 180 arcsec).

* XPOS [none]. X-center of rings. Accepted format are in pixels (starting from 0, unlike GIPSY) or in WCS
coordinates in the format +000.0000d (degrees) or +00:00:00.00 (sexagesimal). If not specified, it is determined
from the centroids of the emission.

* YPOS [none]. Like XPOS, but for the y-axis.

* VSYS [none]. Systemic velocity in km/s. If not given, it is estimated as the central velocity in the global line
profile.

¢ VROT [none]. Rotation velocity in km/s.

* VDISP [8]. Velocity dispersion in km/s.

* VRAD [0]. Radial velocity in km/s.

¢ INC [none]. Inclination in degrees. If not given, it is guessed from the total map.

¢ PA [none]. Position angle in degrees of the receding side of the galaxy, measured anti-clockwise from the North
direction. If not given, it is estimated from the velocity field.

e 70 [0]. Scale-height of the disc in arcsec.

10 Chapter 3. List of tasks and parameters

http://adsabs.harvard.edu/abs/2015MNRAS.451.3021D

BBarolo Documentation, Release 1.7

DENS [1]. Gas surface density in units of /1E20 atoms/cm2. Fit of this parameter is not currently implemented
and its value is not relevant if a normalization is used.

Main options

Some important parameters that can be used to control 3DFIT. All following parameters have default values and are
therefore optional.

FREE [VROT VDISP INC PA]. The list of parameters to fit. Can be any combination of VROT, VDISP, VRAD,
VSYS, INC, PA, Z0, XPOS, YPOS.

MASK [SEARCH]. This parameter tells the code how to build a mask to identify the regions of genuine galaxy
emission. Accepted values are SMOOTH, SEARCH, SMOOTH&SEARCH, THRESHOLD, NONE or a FITS
mask file:

— SMOOTH: the input cube is smoothed according to the smooth parameters and the mask built from the
region at S/N>BLANKCUT, where BLANKCUT is a parameter representing the S/N cut to apply in the
smoothed datacube. Defaults are to smooth by a FACTOR = 2 and cut at BLANKCUT = 3.

— SEARCH: the source finding is run and the largest detection used to determine the mask. The source
Jfinding parameters can be set to change the default values.

— SMOOTH&SEARCH: first smooth to a lower resolution and then scan the smoothed data for sources.
Parameters for smoothing and source-finding are the same as the SMOOTH and SEARCH tasks.

— THRESHOLD: blank all pixels with flux < THRESHOLD. A THRESHOLD parameter must be specified
in the same flux units of the input datacube.

— NONE: all regions with flux > 0 are used.
— file(fitsname.fits): A mask FITS file (i.e. filled with Os and 15s).

NORM [AZIM]. Type of normalization of the model. Accepted values are: LOCAL (pixel by pixel), AZIM
(azimuthal) or NONE.

TWOSTAGE [true]. This flag enables the second fitting stage after parameter regularisation. This is relevant
just if the user wishes to fit parameters other than VROT, VDISP and VRAD. The inclination and the position
angle are regularised by polynomials of degree POLYN or a Bezier function (default), while the other parameters
by constant functions.

REGTYPE [auto]. Type of regularisation to use for second fitting stage. Accepted values are auto (the code
will choose), bezier (Bezier interpolation), median (take the median), or a positive integer n for a nth-degree
polynomial interpolation. It is possible to choose different types for INC, PA, VSYS, XPOS, YPOS and Z0
with a list of keyword-value pairs separated with whitespaces. A single value is used only to set INC and PA
together. For example:

REGTYPE bezier # Bezier function for INC and PA, 'auto' for_
—others

REGTYPE INC=1 PA=median # A line for INC, median for PA

REGTYPE INC=2 PA=0 VSYS=bezier # A parabola for INC, a constant for PA, bezier_

—~for VSYS

POLYN [-1]. DEPRECATED. It will be discontinued after v1.6, use REGTYPE instead.

LINEAR [0.85]. This parameter controls the spectral broadening of the instrument. It is in units of channel and
it represents the standard deviation, not the FWHM. The default is for data that has been Hanning smoothed, so
that FWHM = 2 channels and LINEAR = FWHM/2.355.

SIDE [B]: Side of the galaxy to be fitted. Accepted values are: A = approaching, R = receding and B = both
(default)

3.2. 3DFIT task 11

BBarolo Documentation, Release 1.7

FLAGERRORS [false]. Whether the code has to estimate the errors. This heavily slows down the run.

ADRIFT [false]. If true, calculate the asymmetric drift correction. First regularize velocity dispersion and
density profile and then compute the correction following classical prescription (see e.g. lorio et al. 2017).

ADRIFTPOLI1 [3]. Degree of polynomial function used to regularize the velocity dispersion in the computation
of the asymmetric drift correction. If set to -1, it will not regularize it and just use the ring-by-ring best fit.

ADRIFTPOL2 [3]. Degree of polynomial function used to regularize the function log(VDISP**2*SIGMA) in
the computation of the asymmetric drift correction.

Advanced options

Additional optional parameters to refine the fit for advanced users.

DELTAINC [5]. This parameter fixes the boundaries of parameter space at [INC-DELTAINC,
INC+DELTAINC]. It is not advisable to let the inclination varying over the whole range [0,90].

DELTAPA [15]. This parameter fixes the boundaries of parameter space at [PA-DELTAINC, PA+DELTAPA].
It is not advisable to let the position angle varying over the whole range [0,360].

DELTAVROT [inf]. This parameter fixes the boundaries of parameter space at [VROT-DELTAVROT,
VROT+DELTAVROT]. Default is no limit.

MINVDISP [0]. Minimum gas velocity dispersion allowed.
MAXVDISP [1000]. Maximum gas velocity dispersion allowed.

FTYPE [2]. Function to be minimized. Accepted values are: 1 = chi-squared, 2 = Imod-obsl, (default) and 3 =
Imod-obsl/(mod+obs)).

WFUNC [2]. Weighting function to be used in the fit. Accepted values are: 0 = uniform weight, 1 = Icos()l and
2 = cos()"2, default), where is the azimuthal angle (= O for galaxy major axis). Negative values can be used to
set a sin() weight: -1 = Isin()l and -2 = sin()"2.

LTYPE [1]. Layer type along z. Accepted values are: 1 = Gaussian (default), 2 = sech*2, 3 = exponential, 4 =
Lorentzian and 5 = box.

CDENS [10]. Surface density of clouds in the plane of the rings per area of a pixel in units of /1E20 atoms/cm"2
(see also GIPSY GALMOD).

NV [nchan]. Number of subclouds in the velocity profile of a single cloud (see also GIPSY GALMOD). Default
is the number of channels in the datacube.

BWEIGHT [1]. Exponent of weight for blank pixels. See Section 2.4 of reference paper for details. Large
numbers mean that models that extend further away than observations are severely discouraged.

STARTRAD [0]. This parameter allows the user to start the fit from the given ring. Indexing from O.
NOISERMS [0] If > 0, Gaussian noise with rms = NOISERMS will be added to the final model cube.

NORMALCUBE [true]. If true, the input cube is normalized before the fit. This usually helps convergence and
avoids issues with very small flux values.

BADOUT [false]. If true, it writes also unconverged/bad rings in the output ringfile (with a flag identifying
them).

VELDEF [AUTOY]. Velocity definition to convert frequency/wavelength axis into velocity. Accepted values are
RADIO, OPTICAL or RELATIVISTIC. If AUTO (default), the code will use radio definition if spectral axis is
frequency and relativistic definition if spectral axis is wavelength.

PLOTMASK ([false]. If true, the mask contour is overlaid on the channel maps and PVs plots.

12

Chapter 3. List of tasks and parameters

http://adsabs.harvard.edu/abs/2017MNRAS.466.4159I
https://www.astro.rug.nl/~gipsy/tsk/galmod.dc1
https://www.astro.rug.nl/~gipsy/tsk/galmod.dc1

BBarolo Documentation, Release 1.7

PLOTMINCON [-1]. Minimum flux contour to use in channel map and PV plots. Must be positive. If not
given or negative, the code will estimate an appropriate contour. Contour levels will be set at [1,2,4,8,...] x
PLOTMINCON.

Parameters for high-z galaxies

For high-z galaxies the following additional parameters are available.

REDSHIFT [0]. The redshift of the galaxy.

RESTWAVE [none]. The rest wavelength of the line you want to fit, if the spectral axis of the data is wavelength.
Units must be the same of the spectral axis of the cube. For example, if we want to fit the H-alpha line and
CUNIT3 = “angstrom”, set a value 6563. It can be a single value, or a list of values for fitting multiple lines at
the same time.

RESTFREQ [none]. The rest frequency of the line you want to fit, if the spectral axis of the data is frequency.
Units must be the same of the spectral axis of the cube. The rest frequency value is often read from the FITS
header and does not need to be explicitly set by the user. If set, the RESTFREQ value overrides the header
value. It can be a single value, or a list of values for fitting multiple lines at the same time.

These parameters are used to calculate the conversion from wavelengths/frequencies to velocities. The velocity refer-
ence is set to 0 at RESTWAVE*(REDSHIFT+1) or RESTFREQ/(REDSHIFT+1). VSYS has to be set to 0, but can
be also used to fine-tune the redshift. Finally, if these two parameters are not set, BBarolo will use the CRPIX3 as
velocity reference and the proper VSYS has to be set based on that.

RELINT [1]. A list of line ratios for multiple line fitting. The number of ratios must be the same of given
RESTFREQ or RESTWAVE.

3.2.2 Outputs

The 3DFIT task produces several outputs to check the goodness of the fit. In the following NAME is the name of the
galaxy and NORM is the kind normalization used.

A FITS file NAMEmod_NORM.fits, containing the best-fit model datacube.
A FITS file mask.fits, containing the mask used for the fit.

FITS files of position-velocity cuts taken along the average major and minor axes for the data and the best-fit
model. In particular:

— NAME_pv_a.fits: P-V of the data along the major axis.
— NAME _pv_b fits: P-V of the data along the minor axis.
— NAMEmod_pv_a_NORM fits: P-V of the model along the major axis.
— NAMEmod_pv_b_NORM fits: P-V of the model along the minor axis.
FITS files of the moment maps for the data and the model. These can be found in the maps subdirectory:
— NAME_Omom.fits, NAME_Imom.fits, NAME_2mom.fits: Oth, 1st and 2nd moment maps of the data.

— NAME_NORM_Omom.fits, NAME_NORM_Imom.fits, NAME_NORM_2mom.fits: Oth, 1st and 2nd mo-
ment maps of the model.

Text files rings_finall.txt and rings_final2.txt, containing the ring best-fit parameters for the first and second
fitting steps. The file rings_final2.txt is only produced if TWOSTAGE is true.

A text file densprof.txt, with the radial intensity profiles along the best-fit rings.

If ADRIFT is true, a text file asymdrift.txt with the asymmetric drift correction parameters.

3.2. 3DFIT task 13

BBarolo Documentation, Release 1.7

* Plotting scripts to produce output plots with Gnuplot/Python can be found in the plotscripts subdirectory.
A PDF file NAME_chanmaps_NORM.pdf with a channel-by-channel comparison of data and model cubes.

A PDF file NAME_pv_NORM.pdf with a comparison of data and model P-Vs taken along the average major
and minor axes.

A PDF file NAME_maps_NORM.pdf with a comparison of data and model moment maps.

e A PDF file NAME_parameters.pdf with the best-fit parameters.

If ADRIFT is true, a PDF file asymmetricdrift.pdf with the asymmetric drift correction.

3.2.3 Example

Above outputs can be obtained with the following parameter file and the usual example datacube.

FITSFILE ngc2403.fits
THREADS 4

/////////// 3DFIT parameters /////////////

3DFIT true
// Input rings
NRADIT 41
RADSEP 30
VSYS 132.8
XPOS 77
YPOS 77
VROT 120
VDISP 8

INC 60

PA 123.7
Z0 10

// Free parameters
FREE VROT VDISP PA

// Normalization type

(continues on next page)

14 Chapter 3. List of tasks and parameters

BBarolo Documentation, Release 1.7

v = 289 km/s v = 268 km/s v = 248 km/s v =227 km/s v =207 km/s
a
4 x
e
- #J b
b 4 L
v = 165 km/s v = 145 km/s v =119 km/s v = 98 km/s

v =78 km/s

v =57 km/s

v = 37 km/s

v =16 km/s

v = -4 km/s

T T

b

it
?.
4

0
L 0° @ e .

X

&

=]

3.2. 3DFIT task

15

BBarolo Documentation, Release 1.7

b=124"
150
1250
100
1200
.-G}-. ED_ —_
— L]
.E 4150 E
2 2
- 4100 .5
a4 _sof g
120
=100
-10
=150 1 1 1 1
-1000 =500 0 500 1000
Offset (arcsec)
¢=214"
150 .
— <1250
100
<1200
— ED_
s =
E H1s0 €
<, =
= 41002
-
"-':-] _55_
50
=100
-0
=150 | l | l
—-1000 -500 0 500 1000
Offset (arcsec)
16 Chapter 3. List of tasks and parameters

BBarolo Documentation, Release 1.7

VELOCITY

RESIDUAL

INTENSITY

0.2 0.3
Intensity (jy*km/s)

50

100

-10 0 10
Vies (km/s)

DISPERSION

b4 A
../ 4
100 125 150 175 20.0 225 250 27.5-50 0 50
o (km/s) O, (km/s)

3.2. 3DFIT task

17

BBarolo Documentation, Release 1.7

160 s 05
140 h
.’-4_—‘ H 04
ol 2| 2
15F X
f‘ 80} .J 5 3
- 3 = 0.2
>|‘c— &0 »' C;: 10h [] - =
a0l "
0.1
5 =
20F
0 i i i L i 0 i i i i I 0'0 L i i
0.050
8ot
52 b —
- — L 0.025
g 27| :
- [T R Svmttre o ————] — e f_ L I T o e ——
— ;? 76 -
= Z -0.025
58 24t >
" " : " . ; :]] : : : -0.050
Y - - - : : - - - - - - 140 - - - - - -
80t
130} _ =«
o X 18} = 135
% 125 -:‘M R) ;Ez BOSOSSISISEIS00ENIISINEIIRINEsRINNt0NS
- 761 =
€ 120F = £ 130
b 74} =
115)
0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200
Radius (arcsec) Radius (arcsec) Radius (arcsec)
140 fobs
120 e
100 Z
- . g
wn w -
£ 80 = W
< =3 A
> 60 o %
i)
40+ I
-
20 ®
—-1F s
ok L s L L L L s L s L L h L L s L L h
0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200
Radius (arcsec) Radius (arcsec) Radius (arcsec)

18 Chapter 3. List of tasks and parameters

BBarolo Documentation, Release 1.7

(continued from previous page)

NORM LOCAL
// Mask

MASK SEARCH
// Other options
LTYPE 2
FTYPE 2
DISTANCE 3.2
BWEIGHT 1
WEUNC 2
TWOSTAGE true
ADRIFT true

SILLLSSS LSS L7777 S S S S S

3.2.4 Guidelines for a successful fit

To obtain a good fit with very low resolution data, I usually follow some basic steps:

1. Observational parameters. Check that the header of your datacube has information on the PSF/beam of your
observations. These are usually stored in the BMAJ, BMIN and BPA keywords. If these are not present in the header,
you can use the beam parameters to specify them. Be sure also to set the correct spectral broadening with the
LINEAR parameter. These infos are fundamental to properly account for observational biases.

2. Obtain a mask. A good mask is important for a nice fit because it tells the code which regions are real emission
and which are just noise. The mask should be as large as possible to include faint emission, but not too large to
include lots of noise. Try the different algorithms available in BBarolo and compare the produced masks with your
data. When you find a mask you’re happy with, keep that configuration.

3. Initial guesses. The parameter space can be quite degenerate and it’s very important to provide the code with
reliable initial guesses for parameters. In particular, the code is very sensitive to the initial value of the inclination
angle. BBarolo comes with some algorithms to automatically estimate initial values when these are not explicitly
given in the parameter file. However these algorithms are simple and may fail in a number of situations, depending
also on the quality of your data. If you let the code estimating the initial values, always check that these make sense
before going on with the fit. I usually prefer to provide my initial guesses. I extract the moment maps using the mask
just obtained and use them to get the initial guesses. Center position and inclination (XPOS, YPOS, INC) can be
obtained from the intensity map. If higher resolution observations are available (like HST), I would rather use them
for the galaxy center and inclination. The velocity field can be used to estimate the kinematic position angle (PA).
The midpoint of the global spectrum can be used as systemic velocity (VSYS). I stress that the code is quite good in
estimating the VSYS, so it is quite safe to let it unset (but always check!). The initial values of rotation velocity and
velocity dispersion are not very important, so you can give some random sensible value.

4. Fit. Depending on the data, you can decide to fit several parameters at the same time or keep some of them fixed.
If your data have very low resolution, it may be wise to keep the geometry fixed and fit only the kinematics (VROT
and VDISP). Check the outputs and if you are not happy with the model, try to change the initial parameters and/or
the fit options.

3.2. 3DFIT task 19

BBarolo Documentation, Release 1.7

3.2.5 Fitting several galaxies at the same time

An experimental function of BBarolo 1.5 allow the user to fit several galaxies at the same time. This can be useful, for
example, when a large sample needs to be analysed on a supercluster. BBarolo launches a number of MPI processes
and each process takes care of a galaxy at a time.

To use this function, you need to compile BBarolo with MPI:

> make mpi

If you have an MPI interface (OpenMPI, MPICH, etc. . .), this command will create an executable BBarolo_MPI in the
working directory. You need to prepare a text file with a list of parameter files params.list and then run BBarolo_MPI
through mpirun:

> mpirun -np NPROC BBarolo_MPI -1 params.list

where NPROC is the number of MPI processes. Each MPI process can be also run in multi-thread mode with the
usual THREADS parameter. This is basically the same of running NPROC instances of BBarolo, each with a single
parameter file.

3.3 SPACEPAR task

SPACEPAR allows the user to explore the full parameter space for any pair of 3DFIT parameters in a given range. It
is useful to check that 3DFIT is converging to a good enough minimum of the parameter space. It can be very slow to
run, but it is particularly recommended for low quality observations and small data-cubes.

3.3.1 Parameters

Basic parameters for SPACEPAR are the same of the 3DFIT task. Additional specific parameters are:
* SPACEPAR [false]. This flag enables the SPACEPAR task. Can be true or false.
* P1 [none]. First parameter to explore. Can be any of the 3DFIT FREE parameters.

¢ PIPAR [none]. A list of three numbers: the minimum value, the maximum value and the step size of the
parameter space sampling for P1. For example, ‘0 100 1’ samples between 0 and 100 with step size 1.

* P2 [none]. Second parameter to explore. Can be any of the 3DFIT FREE parameters.

P2PAR [none]. A list of three numbers: the minimum value, the maximum value and the step size of the
parameter space sampling for P2. For example, ‘1 50 0.5’ samples between 1 and 50 with step size 0.5.

3.3.2 Outputs

The task produces the following outputs:
* A FITS file NAME_spacepar.fits, containing the full parameter space for each ring.
» A FITS file mask.fits, containing the mask used.
* A Python script spacepar.py to conveniently plot parameter spaces.

* A PDF file NAME_spacepar.pdf with the plots of parameter spaces for each ring (Python required), produced
through the spacepar.py script. Example below.

20 Chapter 3. List of tasks and parameters

BBarolo Documentation, Release 1.7

R = 15.0 arcsec
0 min = (46.0 kmy/s, 21.0 km/s)

R = 45.0 arcsec

30 min = (66.0 km/s, 21.0 km/s)

25 25
T 20 20
£
=
S 15 15
2}

210 10

5

150 00

R = 165.0 arcsec
o min = (98.0 km/s, 14.0 km/s)

50

R = 135.0 arcsec
a min = (92.0 kmy/s, 15.0 km/s)

100 50 100 150

VDISP (km/s)

o

50 100
VROT (km/s)

150

(=]

50 100
VROT (km/s)

150

3.3.3 Example

R = 75.0 arcsec
o min = (76.0 km/s, 18.0 kmy/s)

25
20
15
10

5

0

0

R = 195.0 arcsec
o min = (104.0 km/s, 13.0 km/s)

50 100 150

25
20
15
10

5

0

0 50 100 150
VROT (km/s)

R = 105.0 arcsec

30 min = (84.0 km/s, 16.0 km/s)

25
20
15
10
5

0

0 50

R = 225.0 arcsec
min = (110.0 km/s, 12.0 km/s)

100 150

30
25}

|
20
15

10

0 50

100
VROT (km/s)

150

Above outputs can be obtained with the following parameter file and the usual example datacube.

FITSFILE ngc2403.fits
THREADS 1

/////////// SPACEPAR-specific /////////////
SPACEPAR true
//First parameter

Pl VROT
//Second parameter

P2 VDISP
//First parameter range
P1PAR 0 150 2
//Second parameter range
P2PAR 0 30 1

S Y I

// OTHER PARAMETERS IN COMMON WITH 3DFIT
NRADII 8

RADSEP 30
VSYS 132.8
XPOS 77
YPOS 77
VROT 120
VDISP 8

INC 60

PA 123.7
z0 10
FREE VROT VDISP
LTYPE 2
FTYPE 2
DISTANCE 3.2

(continues on next page)

3.3. SPACEPAR task

21

BBarolo Documentation, Release 1.7

(continued from previous page)

MASK SEARCH
WEUNC 2

3.4 GALMOD task

GALMOD is the routine underlying the 3DFIT task. It builds a 3D simulated datacube of a disk galaxy starting from
a set of concentric rings with given column density and kinematics. The routine is an updated version of the namesake
routine in GIPSY (see also GIPSY GALMOD).

3.4.1 Parameters
Parameters for rings are the same of the 3DFIT task. Options are LTYPE, CDENS, NV and VELDEEF (see 3DFIT
options).
Additional GALMOD-specific parameters are:
* GALMOD ([false]. This flag enables the 3D disk modelling. Can be true or false.
VVERT [0]. Vertical velocity in km/s.

* DVDZ [0]. Gradient of rotation velocity as we move away from the disk plane. This is in km/s/arcs.

ZCYL [0]. Height in arcsec from the disk plane where the gradient DVDZ begins.

* SM [true]. Whether to smooth the model to the same spatial resolution of data.

3.4.2 Outputs

The task produces the following outputs. Here NAME is the name of the galaxy and NORM is the kind normalization
used.

A FITS file NAMEmod_NORM.fits, containing the model datacube.

A FITS file mask.fits, containing the mask used.

 FITS files of position-velocity cuts taken along the average major and minor axes for the input datacube and the
model. In particular:

— NAME_pv_a.fits: P-V of the data along the major axis.
— NAME pv_b.fits: P-V of the data along the minor axis.
— NAMEmod_pv_a_NORM fits: P-V of the model along the major axis.
— NAMEmod_pv_b_NORM fits: P-V of the model along the minor axis.
» FITS files of the moment maps for the input data and the model. These can be found in the maps subdirectory:
— NAME_Omom.fits, NAME_I1mom.fits, NAME_2mom.fits: Oth, 1st and 2nd moment maps of the data.

— NAME_NORM_Omom.fits, NAME_NORM_Imom.fits, NAME_NORM _2mom.fits: Oth, 1st and 2nd mo-
ment maps of the model.

A text file densprof.txt, with the radial intensity profiles along the chosen rings.

22 Chapter 3. List of tasks and parameters

https://www.astro.rug.nl/~gipsy/tsk/galmod.dc1

BBarolo Documentation, Release 1.7

3.4.3 Example

Above outputs can be obtained with the following parameter file and the usual example datacube.

FITSFILE ngc2403.fits

/////////// GALMOD parameters /////////////

GALMOD true
// Input rings
NRADIT 41
RADSEP 30
VSYS 132.8
XPOS 77
YPOS 77
VROT 120
VDISP 8

INC 60

PA 123.7
Z0 10
DENS 1

VRAD 10

// Normalization type
NORM NONE
// Mask

MASK SMOOTH

SISLLL LSS S S

3.5 SEARCH task

BBarolo’s search algorithm is derived from Duchamp, a 3D source finder for spectral-line data developed by Matthew
Whiting. BBarolo adds a few new functionalities and parallelization. For a comprehensive description of the algorithm
and the input parameters, see Duchamp’s main paper and user guide.

3.5.1 Parameters

SEARCH [false]. This flag enables the source finding algorithm. Can be true or false.

FLAGROBUSTSTATS [true]. Whether to use to robust estimators (median and MADFM) instead of normal
estimators (mean and standard deviation) when calculating cube statistics.

ITERNOISE [false]. Whether to use an iterative algorithm to estimate the noise level. If true, it will reiterate
over the array, masking pixels above 3sigma and re-calculating noise statistics until convergence.

SORTSOURCES [NVOX]. This parameter specifies how to sort detections. Accepted values are XVALUE,
YVALUE, ZVALUE, RA, DEC, VEL, IFLUX (integrated flux), PFLUX (peak flux), NPIX (number of pixels),
NVOX (number of voxels), W20 (width at 20% peak flux), W50 (width at 50% peak flux) and SNR (average
signal-to-noise). By default, sorting is descending, but it can be done ascending by adding a - (e.g. -VEL).

CUBELETS ([false]. If true, it produces individual cubelets and sub-images for each detected source.

SEARCHTYPE [spatial]. How the search is performed. Accepted values are spatial and spectral. Spatial
search is done in 2D channel maps, spectral search along 1D spectra.

SNRCUT [5]. The primary S/N cut (number of above the mean/median).

3.5. SEARCH task 23

https://www.atnf.csiro.au/people/Matthew.Whiting/Duchamp
https://www.atnf.csiro.au/people/Matthew.Whiting/
https://www.atnf.csiro.au/people/Matthew.Whiting/
http://adsabs.harvard.edu/abs/2012MNRAS.421.3242W
http://www.atnf.csiro.au/people/Matthew.Whiting/Duchamp/downloads/UserGuide-1.6.1.pdf

BBarolo Documentation, Release 1.7

« THRESHOLD [none]. Alternatively to SNRCUT, the primary threshold can be given in the same flux units of
the input datacube. This overrides SNRCUT.

* FLAGGROWTH [true]. Whether to grow detected sources to a secondary threshold.
* GROWTHCUT [3]. Secondary S/N cut used when growing objects (number of above the mean/median).

* GROWTHTHRESHOLD [none]. Alternatively to GROWTHCUT, the secondary threshold can be given in
the same flux units of the input datacube. This overrides GROWTHCUT.

* MINPIX [beam area]. The minimum number of spatial pixels for a detection to be accepted. Default is the area
covered by the observational beam.

 MINCHANNELS [2]. The minimum number of channels for a detection to be accepted.

¢ MINVOXELS [none]. The minimum number of voxels for a detection to be accepted. If not set, MINVOXELS
= MINPIX*MINCHANNELS.

¢ MAXCHANNELS [none]. The maximum number of channels for a detection to be accepted. Default is no
limits.

* MAXANGSIZE [none]. The maximum angular size of a detection to be accepted in arcmin. Default is no
limits.

* FLAGADJACENT [true]. Whether to use the adjacent criterion to merge objects. If false, the next two param-
eters are used to determine whether objects are to be merged.

« THRESHSPATIAL [2]. The maximum minimum spatial separation in pixels for two objects to be merged into
a single one. Ignored if FLAGADJACENT is true.

« THRESHVELOCITY [3]. The maximum minimum channel separation in channels for two objects to be
merged into a single one. Ignored if FLAGADJACENT is true.

* REJECTBEFOREMERGE [true]. Whether to reject sources before merging them.
* TWOSTAGEMERGING [true]. Whether to do a partial merge during search.

3.5.2 Outputs

The task produces the following outputs. Here NAME is the name of the galaxy.
* A FITS file detections.fits, a datacube with just the detections.
* A FITS file DetectMap.fits, containing a 2D map telling how many channels are detected in each spaxel.

e FITS files of the moment maps for the detections (NAME_momOth.fits, ~NAME_momlst.fits,
NAME_mom2nd.fits).

* A text file detections.txt, containinig a list of detections and their properties.
3.5.3 Example

With the following parameter file, the datacube of NGC2403 is searched. Unsurprisingly, the galaxy is de-
tected. ..

FITSFILE ngc2403.fits
THREADS 4

/////////// SEARCH parameters /////////////
SEARCH true
// Searching map by map

(continues on next page)

24 Chapter 3. List of tasks and parameters

BBarolo Documentation, Release 1.7

(continued from previous page)

SEARCHTYPE spatial

// Primary and secondary cut

SNRCUT 10

GROWTHCUT 3

// Setting some criteria for rejection
MINPIX 30

MINCHANNELS 5

SIS LSS S S S S SSSSSSSSSSSSS

3.6 SMOOTH task

This task convolves each channel map in a datacube with a given elliptical Gaussian.

3.6.1 Parameters

* SMOOTH ([false]. This flag enables the smooth algorithm. Can be true or false.

¢ OBMAJ] [none]. Major axis of the initial beam in arcsec. Do not set if you want to use the beam information in
the input FITS file (the parameter overrides it).

¢ OBMIN [none]. Minor axis of the initial beam in arcsec. Do not set if you want to use the beam information in
the input FITS file (the parameter overrides it).

* OBPA [none]. Position angle of the major axis of the initial beam in degrees. Do not set if you want to use the
beam information in the input FITS file (the parameter overrides it).

* BMA] [none]. Major axis of the final beam in arcsec.
e BMIN [none]. Minor axis of the final beam in arcsec.
* BPA [none]. Position angle of the major axis of the final beam in degrees.

¢ FACTOR [2]. If set, the beam of the output cube is [FACTOR*OBMAJ,FACTOR*OBMIN,OBPA]. Ignored if
BMAJ, BMIN, BPA are specified.

e SCALEFACTOR [none]. Scaling factor for output datacube. BBarolo will calculate an appropriate one if left
unset.

* FFT [true]. Whether to convolve by using Fast Fourier Transform or not.
* REDUCE [false]. If true, BBarolo repixels the output datacube to preserve the number of pixels in a beam.

* SMOOTHOUTPUT [none]. Output smoothed FITS file. Default is input file name with a suffix indicating the
new beam size.

3.6.2 Outputs

The task writes the smoothed datacubes in the FITS file NAME_ sN.fits, where NAME is the name of the galaxy and N
is the new beam size.

3.6.3 Example

Below, an example parameter file to smooth the usual datacube to a coarser spatial resolution.

3.6. SMOOTH task 25

BBarolo Documentation, Release 1.7

FITSFILE ngc2403.fits
THREADS 4

/////// /) SMOOTH parameters /////////////

SMOOTH true

// New beam parameters.
BMAJ 150

BMIN 150

BPA 0

// Repixeling

REDUCE true

A e

3.7 SMOOTHSPEC task

This task convolves each spectrum in a datacube with a given window, i.e. it performs spectral smoothing.

3.7.1 Parameters

SMOOTHSPEC [false]. This flag enables the spectral smoothing algorithm. Can be frue or false.

WINDOW_TYPE [HANNING]. Type of the smoothing window. Implemented windows include HANNING,
BOXCAR, BARTLETT, WELCH, BLACKMAN, FLATTOP.

WINDOW_SIZE [3]. Size of the smoothing window in channels.

REDUCE [false]. Whether to do channel resampling. If frue, output data will be averaged over (WIN-
DOW_SIZE+1)/2 channels.

3.7.2 Outputs

The task writes the smoothed datacube in the FITS file NAME_hN fits, where NAME is the name of the galaxy and N
is the size of the Hanning window.

3.7.3 Example

Below, a parameter file to Hanning smooth the usual datacube.

FITSFILE ngc2403.fits

/////////// SPECSMOOTH parameters /////////////
SMOOTHSPEC true

WINDOW_TYPE HANNING

WINDOW_SIZE 11

SIS S S S SSSSSSSSSSSSSSSSSSSSSSSSSSSS S S S

26 Chapter 3. List of tasks and parameters

BBarolo Documentation, Release 1.7

3.8 2DFIT task

The classical 2D tilted-ring modelling of a galaxy: a model velocity field is fitted to the observed velocity field (see,
e.g., Begeman 1987). This technique is fast and good for high spatial resolution data, but completely unreliable for
low resolution data (no beam smearing correction).

3.8.1 Parameters

» 2DFIT ([false]. This flag enables the 2D fitting of the velocity field.

Parameters and options that control the task are in common with 3DFIT. In particular, 2DFIT supports the follow-
ing parameters: NRADII, RADSEP, XPOS, YPOS, VSYS, VROT, VRAD, PA, INC, FREE, SIDE, WFUNC. If
FITSFILE is a datacube, the velocity field to fit is extracted as 1st moment using a mask for the input datacube defined
by the MASK parameter (written in the output directory). If FITSFILE is a 2D velocity map, this is used to fit the
tilted-ring model.

3.8.2 Outputs

The task produces the following outputs. NAME is the name of the galaxy.
* A FITS file NAMEmap_1st.fits with the velocity field used for the fit.
* A FITS file NAMEmao_2d_mod.fits, containing the model velocity field.

* A text file NAME_2dtrm.txt, with the best-fit parameters ring-by-ring.

3.8.3 Example

The following example parameter fits a 2D tilted-ring model to the usual NGC2403 datacube.

FITSFILE ngc2403.fits

/////////// 2DFIT parameters /////////////

2DFIT true

// Input rings

NRADIT 41

RADSEP 30

VSYS 132.8

XPOS 77

YPOS 77

VROT 120

INC 60

PA 123.7

// Free parameters
FREE VROT INC PA
// Mask for extracting velocity field
MASK SEARCH

// Which side to fit
SIDE B

// Weighting function
WEUNC 2

4

3.8. 2DFIT task 27

http://adsabs.harvard.edu/abs/1987PhDT.......199B

BBarolo Documentation, Release 1.7

|

Fig. 1: Observed (left) and modelled (right) velocity field for NGC 2403.

3.9 ELLPROF task

This task can be used to calculate the radial density profile of a galaxy.

3.9.1 Parameters

* ELLPROF [false]. This flag enables the radial profile task.

Parameters for the task are: RADII, NRADII, RADSEP, XPOS, YPOS, PA, INC, SIDE (see 3DFIT). If FITSFILE
is a datacube, the profile is calculated from the column density map calculated after masking the cube accordingly to
the MASK parameter. If FITSFILE is a 2D intensity map, this is used to extract the profile.

3.9.2 Outputs

The task produces the following outputs. NAME is the name of the galaxy.
* A FITS file NAME_densmap.fits with the map used to extract the profile.
* A text file NAME_densprof.txt, containing with the radial profiles.
3.9.3 Example

An example parameter file to extract the radial profile from the usual NGC2403 datacube, given a set of rings.

FITSFILE ngc2403.fits

/////////// ELLPROF parameters /////////////

ELLPROF true
// Input rings
NRADII 41

(continues on next page)

28 Chapter 3. List of tasks and parameters

BBarolo Documentation, Release 1.7

(continued from previous page)

RADSEP 30
XPOS 77
YPOS 77
INC 60
PA 123.7

// Mask for extracting intensity map

MASK

SEARCH

// Which side of the galaxy

SIDE

B

SSSSSL LSS S S S S S

3.10 Moment maps and position-velocity cuts

BBarolo can be used to extract global profiles, moment maps and position velocity diagrams. For moment maps and
profile, the input datacube can be masked using the MASK parameter (see 3DFIT).

3.10.1 Parameters for maps

GLOBALPROFILE [false]. If true, calculate the total line profile from a datacube and write it to a text file.
TOTALMAP [false]. If frue, calculate the total intensity map from a datacube and write it to a FITS file.

VELOCITYMAP ([false]. If true, calculate the velocity field from a datacube and write it to a FITS file. If spec-
tral axis in the datacube is frequency/wavelength, the velocity definition can be chosen through the VELDEF
parameter (see 3DFIT advanced options).

DISPERSIONMAP [false]. If true, calculate the velocity dispersion field from a datacube and write it to a
FITS file.

MAPTYPE [MOMENT]. It specifies the way the kinematic maps are derived. Can be either MOMENT (clas-
sical moments) or GAUSSIAN (gaussian fit).

RMSMAP [false]. If true, calculate the RMS map, i.e. the RMS in each spectrum, from a datacube and write
it to a FITS file. The RMS is calculated in an iterative way. RMS is the standard deviation for normal statistics
and MADFM/0.6745 for robust statistics (FLAGROBUSTSTATS parameter).

MASSDENSMAP [false]. If true, calculate a mass surface-density map in units of Msun/pc”2 from a datacube
and write it to a FITS file. This is just for HI data and the input datacube is required to have JY/BEAM flux
density units.

SNMAP [false]. If true, calculate a signal-to-noise map for the masked total map, following the prescriptions
by Verheijen & Sancisi (2001) and Lelli et al. (2014) (see their appendixes). It has to be combined with
TOTALMAP = true. The noise and S/N maps are written in individual FITS files.

CONTCHANS [1E06 1E06]. Number of line-free channels at the low/high velocity ends of the data that have
been used to calculate and subtract the continuum. If a single number is given, it will assume the same number
of channels have been used at both velocity ends. If no continuum subtraction has been done, use large numbers
(default). Only relevant if SNMAP is true.

TAPER [UNIFORM]. Type of online tapering used during data acquisition. Accepted values are UNIFORM
(uniform taper), HANNINGI (hanning taper with all channels kept) and HANNING?2 (hanning taper with half
channels thrown away). Only relevant if SNMAP is true.

3.10.

Moment maps and position-velocity cuts 29

https://ui.adsabs.harvard.edu/abs/2001A%26A...370..765V/abstract
https://ui.adsabs.harvard.edu/abs/2014MNRAS.445.1694L/abstract

BBarolo Documentation, Release 1.7

3.10.2 Parameters for PV slices

* PVSLICE [false]. If true, extract a position-velocity image from a datacube and write it to a FITS file. The slice
can be defined by either a point and an angle (see XPOS_PV, YPOS_PV, PA_PV below), or by two points (see

P1_PV, P2_PV below). The former has priority over the latter.

* XPOS_PYV [none]. Reference X of the slice. Can be a pixel or a coordinate (see also XPOS for 3DFIT).
¢ YPOS_PV [none]. Reference X of the slice. Can be a pixel or a coordinate (see also YPOS for 3DFIT).

* P1_PV [none]. X and Y coordinates of the first point defining a slice. For example: ‘10 30’ for a pixel at X=10

and Y=30.

e P2_PV [none]. X and Y coordinates of the second point defining a slice.

« WIDTH_PV [0]. Width of the slice in arcsec. The PV cut will be averaged over a rectangular window extending

from -width/2 to +width/2 from the slice defined above.

e ANTIALIAS [0.5]. It defines how many pixels to use for antialiasing algorithm. It can be an integer or 0.5.
The number of pixels used for antialiasing will be (14+2* ANTIALIAS)"2. Set it to O for no antialiasing.

3.10.3 Outputs

The required map/P-V is written in a FITS file.

3.10.4 Example

The following parameter file extract maps and PV diagrams from the usual datacube.

FITSFILE ngc2403.fits
THREADS 4

// Using a threshold mask
MASK THRESHOLD
THRESHOLD 0.01

// Extracting all maps
TOTALMAP true

VELOCITYMAP true
DISPERSIONMAP true

RMSMAP true

// Extract PV along major axis
PVSLICE true

XPOS_PV 77

YPOS_PV 77

PA_PV 123

30 Chapter 3. List of tasks and parameters

BBarolo Documentation, Release 1.7

ik 4

e -~

Fig. 2: Moment maps, RMS map and P-Vs along the major and minor axis

3.10.

Moment maps and position-velocity cuts 31

BBarolo Documentation, Release 1.7

32

Chapter 3. List of tasks and parameters

CHAPTER
FOUR

TOOLS FOR FITS FILES

Sometimes a FITS file does not conform with BBarolo or keywords in the FITS header can not be understood by the
code. A few utilities to easily modify a FITS file and its header are now included in the latest versions of BBarolo.
These tools are based on or developed from the NASA’s FITS utilities.

A list of implemented tools can be obtained with BBarolo —--fitsutils. Four utilities are currently available.
Each tool is promptly accessible from the command line through BBarolo —-UTILNAME, where UTILNAME is
one of the utilities listed below:

modhead. Modify or add a keyword to a FITS header. Type BBarolo —-modhead for help:

$$ BBarolo —--modhead
BBarolo's MODHEAD FITS utility:

Write or modify the value of a header keyword.
If a newvalue is not specified, just print the current value.

Usage:
BBarolo —--modhead filename[ext] keyword [newvalue]

Examples:
BBarolo ——modhead in.fits cunitl (list the CUNIT1 keyword)
BBarolo —--modhead in.fits cunitl deg (set CUNIT1 = 'deg')

NOTE: it may be necessary to enclose the input file name in single
quote characters on some Unix shells.

remhead. Remove a keyword from a FITS header. Type BBarolo —--remhead for help:

$$ BBarolo —-remhead
BBarolo's REMHEAD FITS utility:
Delete a header keyword from a FITS file.

Usage:
BBarolo —-remhead filename[ext] keyword

Examples:

(continues on next page)

33

https://heasarc.gsfc.nasa.gov/docs/software/fitsio/cexamples.html

BBarolo Documentation, Release 1.7

(continued from previous page)

BBarolo —--remhead in.fits object (remove the OBJECT keyword)

NOTE: it may be necessary to enclose the input file name in single
quote characters on some Unix shells.

listhead. List all keywords in a FITS header. Type BBarolo —-1isthead for help.

$$ BBarolo —--listhead
BBarolo's LISTHEAD FITS utility:

List the FITS header keywords in a single extension, or, if [ext] 1is
not given, list the keywords in all the extensions.

Usage:
BBarolo —-listhead filename [ext]
Examples:
BBarolo —-listhead file.fits list every header in the file)

(
BBarolo —-listhead file.fits[0] (list primary array header)
BBarolo —--listhead file.fits[2] (list header of 2nd extension)
BBarolo —-listhead file.fits[GTI] (list header of GTI extension)
NOTE: it may be necessary to enclose the input file name in single
quote characters on some Unix shells.

fitscopy. Make a copy of a FITS file, optionally selecting a subset. Type BBarolo —--fitscopy for help:

$$ BBarolo —--fitscopy
BBarolo's FITSCOPY FITS utility:

Copy an input file to an output file, optionally filtering the file in the
process. Filters may be used to extract a subimage from a larger image,
select rows from a table, filter a table with a GTI time extension or a SAO
region file, create or delete columns in a table, create an image by binning
2 table columns, and convert IRAF format .imh or raw binary data files into
FITS images (see CFITSIO User's Guide for filtering syntax).

Usage:
BBarolo —-—-fitscopy inputfile[filter] outputfile

Examples:
BBarolo ——-fitscopy in.fits out.fits (simple file copy)
BBarolo ——-fitscopy in.fits[11:50,21:60] out.fits (copy a subimage)
BBarolo —-—-fitscopy in.fits[-%,x] out.fits (mirror reverse axis 0)
BBarolo ——-fitscopy iniraf.imh out.fits (IRAF image to FITS)

(continues on next page)

34 Chapter 4. Tools for FITS files

BBarolo Documentation, Release 1.7

(continued from previous page)

BBarolo —-—-fitscopy in.dat[i512,512] out.fit (binary file to FITS)
BBarolo ——-fitscopy in.fits[events] [pi>35] out.fits (copy rows with pi>35)
BBarolo ——-fitscopy in.fits[events] [bin X,Y] out.fits (bin an image)

NOTE: it may be necessary to enclose the input file name in single quote
characters on some Unix shells.

fitsarith. Perform arithmetic operations between two FITS files or on a single FITS file. Type BBarolo
——fitsarith for help:

$$ BBarolo ——fitsarith
BBarolo's FITSARITH FITS utility:

Perform an operation between two images or between an image and a number.
Supported operators are add, sub, mul, div (first character required).

Usage:
BBarolo ——-fitsarith imagel { image2 | value } oper outimage

Examples:
BBarolo —--fitsarith inl.fits in2.fits add out.fits (add the 2 files)
BBarolo ——-fitsarith inl.fits 1000.0 mul out.fits (mult inl by 1000)

NOTE: it may be necessary to enclose the file names in single quote
characters on some Unix shells.

35

BBarolo Documentation, Release 1.7

36

Chapter 4. Tools for FITS files

CHAPTER
FIVE

INSTALLING PYBBAROLO

pyBBarolo is a python wrapper to the BBarolo main code. It is compatible with both Python 2 (>2.6) and with Python
3. It can be easily installed via either pip or from the main repository.

5.1 From pip

pyBBarolo is available as a package in the Python Package Index (PyPI). The easiest way of installing it is through
pip:

’> pip install pyBBarolo

This will download the package, compile BBarolo source code and install pyBBarolo in the python library path. Make
sure you have permissions to write in the installing directory. Depending on your computer setup, you may need to
run pip with superuser privileges (e.g.: > sudo pip install pyBBarolo).

N.B.: The above command will compile BBarolo, which means that your machine needs to have pre-installed all
the libraries which the C++ code depends from (see requirements). If pip fails during compilation, please follow the
procedure below.

5.2 Build and install

The python package can be alternatively installed from the main repository. You’ll need to compile BBarolo as a
library and then install pyBBarolo:

1. Follow steps 1-4 of procedure to compile BBarolo from source:

wget https://github.com/editeodoro/Bbarolo/archive/X.Y.tar.gz
tar —xvf X.Y.tar.gz && cd Bbarolo—X.Y
./configure

>
>
>
> make

where X.Y is the software release. PyBBarolo is only available for BBarolo’s release 1.4 and over.

2. Install the python package:

> python setup.py install

If either compilation or installation fail, refer to BBarolo compiling and troubleshooting pages.

37

https://pypi.python.org/pypi

BBarolo Documentation, Release 1.7

38

Chapter 5. Installing pyBBarolo

CHAPTER

SIX

QUICKSTART

6.1 Running a task

In pyBBarolo, BBarolo’s task are wrapped as python classes. The generic procedure to run a task is as follow:

1. Import the task from pyBBarolo module:

’from pyBBarolo import Task

where Task is one of pyBBarolo rasks.

2. Create an object of the task class:

’bb = Task (fitsname)

where fitsname is the input FITS file. All tasks need an initial FITS file.

3. Initialize the task:

’bb.init(args)

where args are required arguments that depend on the various tasks. Required arguments can be printed
with:

’bb.show_arguments()

4. Set options:

’bb.set_options(opts)

where opts are the task-dependent available options. All options have default values, so this step is not
mandatory. To see a list of available options:

’bb.show_options()

5. Run the task:

’bb.compute()

6.2 Available tasks

* FitMod3D(): wrapped class for BBarolo’s 3DFIT task.

39

BBarolo Documentation, Release 1.7

GalMod(): wrapped class for BBarolo’s GALMOD task.
¢ Search(): wrapped class for BBarolo’s SEARCH task.
FitMod2D(): wrapped class for BBarolo’s 2DFIT task.

Ellprof(): wrapped class for BBarolo’s ELLPROF task.
* SpectralSmooth(): wrapped class for BBarolo’s SMOOTHSPEC task.

6.3 Example 1: 3D fit of a galaxy

Suppose you have an astonishing observation of your favorite galaxy and you want to fit a 3D kinematic model to your
emission line datacube.

Let’s fit the HI datacube of NGC 2403, which is available as a part of BBarolo’s working examples. We just have to
set initial conditions, options and then run the task.

First of all, we import and start FitMod3D:

from pyBBarolo import FitMod3D

FITS file of the galaxy to model
filen = "./examples/ngc2403.fits"
Initializing a 3DFIT object

f3d = FitMod3D (filen)

Secondly, we initialize rings with initial guesses for the fit:

Initializing rings. Parameters can be values or arrays
f3d.init (radii=np.arange (15,1200, 30),xpos=77,ypos=77,vsys=132.8,vrot=120,vdisp=8,
—vrad=0,z0=10,inc=60,phi=123.7)

A list of needed arguments can be printed with £3d. show_arguments ().
Thirdly, we can change some default options for the fit. For a list of available options: £3d. show_options ().

For instance, we can set a mask made through the source-finding algorithm (mask="SEARCH"), parameters to
fit (free="VROT VDISP"), the distance of the galaxy in Mpc (distance=3.2) and the directory for outputs
(outfolder="output/ngc2403):

f3d.set_options (mask="SEARCH", free="VROT VDISP",wfunc=2,distance=3.2,outfolder=
— 'output/ngc2403")

If the beam information is not available in the FITS header, it is fundamental to set the size of the beam:

’f3d.set_beam(bmaj:60,bmin:60,bpa:780)

It is now time to run the fit:

’bfrings, bestmod = £3d.compute (threads=4)

This function performs the fit and writes relevant FITS files in the output directory. The function returns a n x m
matrix containing the best-fit rings (bf r ings), where n = number of rings and m = number of parameters, and a FITS
astropy object (bestmod) containing the best-fit model. These are also written in bfit and outmodel methods of
FitMod3D class.

Finally, we can use BBarolo built-in routines to write plots of data and model, like channel maps, moment maps,
position-velocity diagrams and best-fit parameters:

40 Chapter 6. Quickstart

http://editeodoro.github.io/Bbarolo/downloads/examples/

BBarolo Documentation, Release 1.7

f3d.plot_model ()

6.4 Example 2: 3D model of a galaxy

It is also possible to simply build a 3D model datacube from given parameters. This is accomplished with the GalMod
task. The procedure is similar to the one above:

from pyBBarolo import GalMod

FITS file of the galaxy to model

filen = "./examples/ngc2403.fits"

Initializing a GalMod object

gm = GalMod(filen)

Initializing rings. Parameters can be values or arrays

gm.init (radii=np.arange (15,1200, 30),xpos=74,ypos=74,vsys=132.8,vrot=120,vrad=10,
—vvert=5,vdisp=8,z0=10,1inc=60,phi=123.7)

Now, let's take a look to the default options (see BB documentation)
gm.show_options ()

Changing some options

gm.set_options (ltype=1)

Compute the model

mymodel = gm.compute ()

Smooth to the same resolution of data

mymodel = gm.smooth ()

mymodel is an astropy cube and we can do whatever we like with it.
mymodel .writeto ("awesome_model.fits",overwrite=True)

6.5 Example 3: All tasks

This script shows how to use all wrapped classes:

import os
import numpy as np
from pyBBarolo import =«

v L

if name == main

fitsname = "./examples/ngc2403.fits"

#Il'

3D FIT TUTORIAL ###########A###A##AHFFAHFAEHAAAFHAARFAAFAAAAAAHFAAHAAAFAAHHAAS

f3d = FitMod3D (fitsname)

f3d.init (radii=np.arange (15,450,30),xpos=77,ypos=77,vsys=132.8,\
vrot=120,vdisp=8, vrad=0,2z0=10,inc=60,phi=123.7)

f3d.show_options ()

f3d.set_options (mask="SEARCH", free="VROT VDISP",wfunc=2,distance=3.2, ltype=2)

f3d.set_options (outfolder="output/ngc2403")

f3d.set_beam (bmaj=60,bmin=60,bpa=-80)

bfrings, bestmod = f3d.compute (threads=4)

f3d.plot_model ()

FHRAFAAAFAAHAAFHAAEFAAHFAAFAAA AR AR HAAHA A H A HAAFH A RF A H A HA AR A A E A H A

#Il'

(continues on next page)

6.4. Example 2: 3D model of a galaxy 41

BBarolo Documentation, Release 1.7

(continued from previous page)

#!!1

GALMOD TUTORIAL #########H##AH#H#HHHAHHHAHFAEHAARHAARFAAHAAAAAAHFAHHAAHA A

gm = GalMod (fitsname)

gm.show_arguments ()

gm.init (radii=np.arange(15,1200,30),xpos=74,ypos=74,vsys=132.8,\
vrot=120,vdisp=8,2z0=10,inc=60,phi=123.7)

gm.show_options ()

gm.set_options (ltype=1)

mymodel = gm.compute ()

mymodel = gm.smooth ()

mymodel .writeto ("awesome_model.fits",overwrite=True)

HERAHARAHAAHAFAAAAAAFAAARAAAAHARAAAAAAFA R A AR A AHA AR A AR EA AR

#!!1

#7'7

ELLPROF TUTORIAL ###############H#HAHFHHHHHHHHHHAHEHAAHHHAHAAHHHAHA A H A HH A
el = Ellprof (fitsname)

el.show_arguments ()

el.init (radii=np.arange (15,1200, 30),xpos=74,ypos=74,inc=60,phi=123.7)
el.show_options /()

el.set_options (mask="SMOOTH")

rings = el.compute ()

print (rings|['rad'],rings|['msurfdens'])

el . writeto("rings_ellprof.txt™")

22222 s s s s s e EseE s TS E e RIS IS TSI LT EEEEE DL L LS
#"Y

#rrr

2DFIT TUTORIAL ########AH##AHFAAHAAAFAAHFAAEHAAAAAARFAAAAAAAAAHA AR HAAEF RS
rm = FitMod2D (fitsname)

rm.show_arguments ()

rm.init (radii=np.arange (15,1200, 30),xpos=74,ypos=74,vsys=132.8,vrot=120, inc=60,

—phi=123.7)

rm.show_options ()

rm.set_options (wfunc=1, free="VROT INC")

rings = rm.compute (threads=1)

print (rings(['rad'],rings['vrot'])

rm.writeto("rings_2dfit.txt")
FHRAFFAHFAAHAAFHAAFFAAFFAAFAAAF A H AR H AR HF A F A FHAARF A HA A H A HA A A H A EF A H A
#rrr

#I!r

SEARCH TUTORIAL ###############HH#H#HHHHHHHHEHAAHHHAHAHAHHAHFHAHAHHHAHHHAHHAAS
s = Search (fitsname)

s.set_options (growth=True)

s.show_options ()

s.search (threads=4)
FHAHFAHAAAHAAFHAAFFAAHFAAFAAA AR H AR A AR HHFAFFFAFH AR RF A HF A H AR A A H A AR H A
#I!'

#I!’

SPECTRAL SMOOTHING TUTORIAL ##############HH##AHH#HAAHHFHAHHAHHHHHAHHHAHEHAAHAAS
s = SpectralSmoothing (fitsname)

a = s.smooth (window_type='hanning',window_size=11,threads=8)

s.writeto ("smoothedcube.fits", average=True)

FHAAAFAAAARARFAAAFRAFFAAFFAAF AR A AR A AR A AR AR FRAAFAAFFRAAFAAAFAAAFAAAHAAFAAAS

(continues on next page)

42

Chapter 6. Quickstart

BBarolo Documentation, Release 1.7

(continued from previous page)

#ror

6.6 pyBBarolo for PROs

Beside the python classes described above, there is probably a better way to run BBarolo from python for users who
are familiar with BBarolo’s parameter files. A class BBaroloWrapper to call conveniently BBarolo C++ executable
is implemented in the pyBBarolo.wrapper module. This class allows the user to set any parameter supported in
BBarolo and it is extremely useful for scripting.

The BBaroloWrapper class takes in input a list of BBarolo’s parameters, which can be given as either a python
dictionary or a list of strings. The class is basically a container of parameters. A working example is below:

from pyBBarolo.wrapper import BBaroloWrapper

Initializing class (doing some spatial smoothing for example)
bb = BBaroloWrapper (fitsfile='./examples/ngc2403.fits',smooth=True,bmaj=120,bmin=120)

Parameters can alternatively be given as a list of strings or dictionary

bb = BBaroloWrapper (['FITSFILE=./examples/ngc2403.fits', 'SMOOTH=True', 'BMAJ=120",
— "BMIN=120"])

bb = BBaroloWrapper (dict (fitsfile="'./examples/ngc2403.fits', smooth=True,bmaj=120,
—bmin=120))

Parameters can also be added or removed
bb.add_options (threads=8,outfolder="myoutfolder")
bb.remove_option('threads")

Parameters can be printed or easily be written in a parameter file
print (bb)
bb.write_parameterfile ("param.par")

Now we can run BBarolo
bb.run (exe="/path_to_BBarolo/BBarolo", stdout=None)

The above is exactly the same as calling BBarolo with a parameter file, thus it will write all the outputs in the usual
output folder. The run () function above takes in input two optional parameters, exe and stdout. The former
is your local BBarolo binary (if not given, it will search in your $PATH). The latter is where to write BBarolo’s
messages: if None or not given, BBarolo will print messages on the command line, if 'filename.log' it will
write everything in a file filename.log , if 'null' no output message will be written.

NB 1: Parameter names given to BBaroloWrapper are not case sensitive.

NB 2: No check is performed on the given parameters. If a parameter does not exist in BBarolo, it will just be ignored.

6.6. pyBBarolo for PROs 43

BBarolo Documentation, Release 1.7

44

Chapter 6. Quickstart

CHAPTER
SEVEN

API

45

BBarolo Documentation, Release 1.7

46

Chapter 7. API

CHAPTER
EIGHT

LICENSE AND CITATIONS

BBarolo and pyBBarolo are distributed under the terms of the GNU General Public License version 3.0. The text of
the license is included in the main directory of the repository as LICENSE.

If you use BBarolo or pyBBarolo in any published work, please cite the code paper: Di Teodoro & Fraternali, 3D
BAROLO: a new 3D algorithm to derive rotation curves of galaxies, 2015, MNRAS, 451, 3021.

47

http://www.gnu.org/copyleft/gpl.html
http://adsabs.harvard.edu/abs/2015MNRAS.451.3021D
http://adsabs.harvard.edu/abs/2015MNRAS.451.3021D

BBarolo Documentation, Release 1.7

48

Chapter 8. License and citations

CHAPTER
NINE

TROUBLESHOOTING

I will try to write a troubleshooting page while I receive the feedback from BBarolo’s users.

In the meanwhile, please report any bug or problem you have with BBarolo and pyBBarolo. If you are a Github user,
you can submit an issue ticket at this page. Otherwise you can email me. Please attach any significant error messages
and tell me how to reproduce the problem.

I will try to fix the issues as soon as I can. Thank you.

9.1 Frequently Asked Questions

1) The code compiled successfully but when I run BBarolo I get an “error while loading shared libraries:
libXXX: cannot open shared object file: No such file or directory”.

This error arises when some of BBarolo’s dependencies (CFITSIO, WCS or FFTW libraries) have not been installed
in a default library path. Solve this problem by adding the library path to the LD_LIBRARY_PATH variable. If you
are using Bash shell:

’ export LD_LIBRARY_PATH=/path/to/l1ibXXX:$LD_LIBRARY_PATH

If you are using C-shell:

’setenv LD_LIBRARY_PATH /path/to/1ibXXX:S$LD_LIBRARY_PATH

To make it permanent, the above commands can be simply added to your ~/.bashrc or ~/.cshrc files (make sure to start
a new shell after doing it).

2) On my Mac OS, BBarolo compiles correctly but then it crashes with no error message.

This may be due to Apple default compiler, Clang. The latest versions of Clang++ does not compile the code correctly,
resulting in a SEGSEV error (like “zsh: abort”). To fix this, recompile the code using another compile (for example
GNU GCC).

3) BBarolo seems to run smoothly but suddenly it gets “Killed”.

49

https://github.com/editeodoro/bbarolo/issues
mailto:enrico.diteodoro@gmail.com

BBarolo Documentation, Release 1.7

The code has been killed by the system kernel for some reason. For example, you can check that with:

dmesg | grep —i kill

99% will be a memory problem. BBarolo needs to allocate as much memory as three times the size of the input
datacube. If you are working with big datasets (>4 GB), you can easily run out of memory. Please use a more
powerful machine.

50 Chapter 9. Troubleshooting

	Installing BBarolo
	Pre-compiled binaries
	Compiling from source
	Requirements
	Compiling

	Installing via Homebrew (MAC only)

	Running BBarolo
	Graphical User Interface
	Command line

	List of tasks and parameters
	General parameters
	Input/output parameters
	Beam parameters

	3DFIT task
	Parameters
	Outputs
	Example
	Guidelines for a successful fit
	Fitting several galaxies at the same time

	SPACEPAR task
	Parameters
	Outputs
	Example

	GALMOD task
	Parameters
	Outputs
	Example

	SEARCH task
	Parameters
	Outputs
	Example

	SMOOTH task
	Parameters
	Outputs
	Example

	SMOOTHSPEC task
	Parameters
	Outputs
	Example

	2DFIT task
	Parameters
	Outputs
	Example

	ELLPROF task
	Parameters
	Outputs
	Example

	Moment maps and position-velocity cuts
	Parameters for maps
	Parameters for PV slices
	Outputs
	Example

	Tools for FITS files
	Installing pyBBarolo
	From pip
	Build and install

	Quickstart
	Running a task
	Available tasks
	Example 1: 3D fit of a galaxy
	Example 2: 3D model of a galaxy
	Example 3: All tasks
	pyBBarolo for PROs

	API
	License and citations
	Troubleshooting
	Frequently Asked Questions

